SMT基礎(chǔ)知識
SMT簡介
電子電路表面組裝技術(shù)(Surface Mount Technology,SMT),稱為表面貼裝或表面安裝技術(shù)。它是一種將無引腳或短引線表面組裝元器件(簡稱SMC/SMD,中文稱片狀元器件)安裝在印制電路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通過回流焊或浸焊等方法加以焊接組裝的電路裝連技術(shù)。
SMT特點
組裝密度高、電子產(chǎn)品體積小、重量輕,貼片元件的體積和重量只有傳統(tǒng)插裝元件的1/10左右,一般采用SMT之后,電子產(chǎn)品體積縮小40%~60%,重量減輕60%~80%。
可靠性高、抗震能力強。焊點缺陷率低。
高頻特性好。減少了電磁和射頻干擾。
易于實現(xiàn)自動化,提高生產(chǎn)效率。降低成本達30%~50%。節(jié)省材料、能源、設(shè)備、人力、時間等。
SMT組成
總的來說,SMT包括表面貼裝技術(shù)、表面貼裝設(shè)備、表面貼裝元器件、SMT管理。
為什么要用SMT
電子產(chǎn)品追求小型化,以前使用的穿孔插件元件已無法縮小。
電子產(chǎn)品功能更完整,所采用的集成電路(IC)已無穿孔元件,特別是大規(guī)模、高集成IC,不得不采用表面貼片元件。
產(chǎn)品批量化,生產(chǎn)自動化,廠方要以低成本高產(chǎn)量,出產(chǎn)優(yōu)質(zhì)產(chǎn)品以迎合顧客需求及加強市場競爭力
電子元件的發(fā)展,集成電路(IC)的開發(fā),半導體材料的多元應用。
電子科技革命勢在必行,追逐國際潮流。
SMT基本工藝構(gòu)成要素
印刷(紅膠/錫膏)--> 檢測(可選AOI全自動或者目視檢測)-->貼裝(先貼小器件后貼大器件:分高速貼片及集成電路貼裝)-->檢測(可選AOI 光學/目視檢測)--> 焊接(采用熱風回流焊進行焊接)--> 檢測(可分AOI 光學檢測外觀及功能性測試檢測)--> 維修(使用工具:焊臺及熱風拆焊臺等)--> 分板(手工或者分板機進行切板)
工藝流程簡化為:印刷-------貼片-------焊接-------檢修(每道工藝中均可加入檢測環(huán)節(jié)以控制質(zhì)量)
錫膏印刷
其作用是將錫膏呈45度角用刮刀漏印到PCB的焊盤上,為元器件的焊接做準備。所用設(shè)備為印刷機(錫膏印刷機),位于SMT生產(chǎn)線的最前端。
零件貼裝
其作用是將表面組裝元器件準確安裝到PCB的固定位置上。所用設(shè)備為貼片機,位于SMT生產(chǎn)線中印刷機的后面,一般為高速機和泛用機按照生產(chǎn)需求搭配使用。
回流焊接
其作用是將焊膏融化,使表面組裝元器件與PCB板牢固焊接在一起。所用設(shè)備為回流焊爐,位于SMT生產(chǎn)線中貼片機的后面,對于溫度要求相當嚴格,需要實時進行溫度量測,所量測的溫度以profile的形式體現(xiàn)。
AOI光學檢測
其作用是對焊接好的PCB板進行焊接質(zhì)量的檢測。所使用到的設(shè)備為自動光學檢測機(AOI),位置根據(jù)檢測的需要,可以配置在生產(chǎn)線合適的地方。有些在回流焊接前,有的在回流焊接后。
維修
其作用是對檢測出現(xiàn)故障的PCB板進行返修。所用工具為烙鐵、返修工作站等。配置在AOI光學檢測后。
分板
其作用對多連板PCBA進行切分,使之分開成單獨個體,一般采用V-cut與 機器切割方式。
焊錫膏基礎(chǔ)知識
焊錫膏是將焊料粉末與具有助焊功能的糊狀焊劑混合而成的一種漿料,通常焊料粉末占90%左右,其余是化學成分。
我們把能隨意改變形態(tài)或任意分割的物體稱為流體,研究流體受外力而引起形變與流動行為規(guī)律和特征的科學稱為流變學。但在工程中則用黏度這一概念來表征流體黏度的大小。
焊錫膏的流變行為
焊錫膏中混有一定量的觸變劑,具有假塑性流體性質(zhì)。焊錫膏在印刷時,受到刮刀的推力作用,其黏度下降,當達到模板窗口時,黏度達到最低,故能順利通過窗口沉降到PCB的焊盤上,隨著外力的停止,焊錫膏黏度又迅速回升,這樣就不會出現(xiàn)印刷圖形的塌落和漫流,得到良好的印刷效果。
影響焊錫膏黏度的因素:焊料粉末含量;焊料粉末粒度;溫度;剪切速率。
1、焊料粉末含量
焊錫膏中焊料粉末的增加引起黏度的增加。
2、焊料粉末粒度
焊料粉末粒度增大,黏度降低。
3、溫度
溫度升高,黏度下降。印刷的最佳環(huán)境溫度為23±3度。
4、剪切速率
萬文淵。
SMT回流焊技術(shù)
回流焊或浸焊等方法加以焊接組裝的電路裝連技術(shù)。
回流焊概述
回流焊又稱“再流焊”或“再流焊機”或“回流爐”(Reflow Oven),它是通過提供一種加熱環(huán)境,使焊錫膏受熱融化從而讓表面貼裝元器件和PCB焊盤通過焊錫膏合金可靠地結(jié)合在一起的設(shè)備。根據(jù)技術(shù)的發(fā)展分為:氣相回流焊、紅外回流焊、遠紅外回流焊、紅外加熱風回流焊和全熱風回流焊。另外根據(jù)焊接特殊的需要,含有充氮的回流焊爐。目前比較流行和實用的大多是遠紅外回流焊、紅外加熱風回流焊和全熱風回流焊。
紅外再流焊
(1)第一代-熱板式再流焊爐
(2)第二代-紅外再流焊爐
熱能中有 80%的能量是以電磁波的形式――紅外線向外發(fā)射的。其波長在可見光之上限0.7~0.8um 到1mm 之間,0.72~1.5um 為近紅外;1.5~5.6um 為中紅外;5.6~1000um 為遠紅外,微波則在遠紅外之上。
升溫的機理:當紅外波長的振動頻率與被輻射物體分子間的振動頻率一致時,就會產(chǎn)生共振,分子的激烈振動意味著物體的升溫。波長為1~8um。
第四區(qū)溫度設(shè)置最高,它可以導致焊區(qū)溫度快速上升,提高泣濕力。優(yōu)點:使助焊劑以及有機酸和鹵化物迅速水利化從而提高潤濕能力;紅外加熱的輻射波長與吸收波長相近似,因此基板升溫快、溫差小;溫度曲線控制方便,彈性好;紅外加熱器效率高,成本低。
缺點:穿透性差,有陰影效應――熱不均勻。
對策:在再流焊中增加了熱風循環(huán)。
(3)第三代-紅外熱風式再流焊。
對流傳熱的快慢取決于風速,但過大的風速會造成元件移位并助長焊點的氧化,風速控制在1.0~1.8m/s。熱風的產(chǎn)生有兩種形式:軸向風扇產(chǎn)生(易形成層流,其運動造成各溫區(qū)分界不清)和切向風扇(風扇安裝在加熱器外側(cè),產(chǎn)生面板渦流而使得各溫區(qū)可精確控制)。
基本結(jié)構(gòu)與溫度曲線的調(diào)整:
1. 加熱器:管式加熱器、板式加熱器鋁板或不銹鋼板。
2. 傳送系統(tǒng):耐熱四氟乙烯玻璃纖維布。
3. 運行平穩(wěn)、導熱性好,但不能連線,適用于小型熱板型不銹鋼網(wǎng),適用于雙面PCB,也不能連線;鏈條導軌,可實現(xiàn)連線生產(chǎn)。
4. 強制對流系統(tǒng):溫控系統(tǒng)。
回流焊工藝流程
1. 單面板:
(1) 在貼裝與插件焊盤同時印錫膏;
(2) 貼放 SMC/SMD;
(3) 插裝 TMC/TMD;
(4) 再流焊。
2. 雙面板
(1) 錫膏-再流焊工藝,完成雙面片式元件的焊接;
(2) 然后在 B 面的通孔元件焊盤上涂覆錫膏;
(3) 反轉(zhuǎn) PCB 并插入通孔元件;
(4) 第三次再流焊。
回流焊注意事項
1、與SMB 的相容性,包括焊盤的潤濕性和SMB 的耐熱性;
2、焊點的質(zhì)量和焊點的抗張強度;
3、焊接工作曲線:
預熱區(qū):升溫率為1.3~1.5 度/s,溫度在90~100s 內(nèi)升至150 度。
保溫區(qū):溫度為 150~180 度,時間40~60s。
再流區(qū):從180到最高溫度250 度需要10~15s,回到保溫區(qū)約30s快速冷卻。
無鉛焊接溫度(錫銀銅)217度。
4、Flip Chip 再流焊技術(shù)F.C。
汽相再流焊
又稱汽相焊(Vapor Phase Soldering,VPS),美國最初用于厚膜集成電路的焊接,具有升溫速度快和溫度均勻恒定的優(yōu)點,但傳熱介質(zhì)FC-70 價格昂貴,且需FC-113,又是臭氧層損耗物質(zhì)優(yōu)點:
1、汽相潛熱釋放對SMA 的物理結(jié)構(gòu)和幾何形狀不敏感,使組件均勻加熱到焊接溫度。
2、焊接溫度保持一定,無需采用溫控手段,滿足不同溫度焊接的需要。
3、VPS 的汽相場中是飽和蒸氣,含氧量低。
4、熱轉(zhuǎn)化率高。
激光再流焊
1、原理和特點:利用激光束直接照射焊接部位。
2、焊點吸收光能轉(zhuǎn)變成熱能,加熱焊接部位,使焊料熔化。
3、種類:固體YAG(乙鋁石榴石)激光器。
SMT常用知識簡介
1.一般來說,SMT車間規(guī)定的溫度為23±7℃;
2.錫膏印刷時,所需準備的材料及工具: 錫膏、鋼板、刮刀、擦拭紙、無塵紙、清洗劑、攪拌刀;
3. 一般常用的錫膏成份為Sn96.5%/Ag3%/Cu0.5%;
4. 錫膏中主要成份分為兩大部分錫粉和助焊劑;
5. 助焊劑在焊接中的主要作用是去除氧化物、破壞融錫表面張力、防止再度氧化;
6. 錫膏中錫粉顆粒與Flux(助焊劑)的體積之比約為1:1,重量之比約為9:1;
7. 錫膏的取用原則是先進先出;
8. 錫膏在開封使用時,須經(jīng)過兩個重要的過程回溫、攪拌;
9. 鋼板常見的制作方法為:蝕刻、激光、電鑄;
10. SMT的全稱是Surface mount(或mounting)technology,中文意思為表面粘著(或貼裝)技術(shù);
11. ESD的全稱是Electro-static discharge,中文意思為靜電放電;
12. 制作SMT設(shè)備程序時,程序中包括五大部分,此五部分為PCB data; Mark data;Feeder data; Nozzle data; Part data;
13. 無鉛焊錫Sn/Ag/Cu 96.5/3.0/0.5的熔點為217C;
14. 零件干燥箱的管制相對溫濕度為< 10%;
15. 常用的被動元器件(PassiveDevices)有:電阻、電容、電感(或二極體)等;主動元器件(ActiveDevices)有:電晶體、IC等;
16. 常用的SMT鋼板的材質(zhì)為不銹鋼;
17. 常用的SMT鋼板的厚度為0.15mm(或0.12mm);
18.靜電電荷產(chǎn)生的種類有摩擦、分離、感應、靜電傳導等;靜電電荷對電子工業(yè)的影響為:ESD失效、靜電污染;靜電消除的三種原理為靜電中和、接地、屏蔽;
19. 英制尺寸長x寬0603=0.06inch*0.03inch,公制尺寸長x寬3216=3.2mm*1.6mm;
20. 排阻ERB-05604-J81第8碼“4”表示為4個回路,阻值為56歐姆。電容ECA-0105Y-M31容值為C=106PF=1NF =1X10-6F;
21. ECN中文全稱為:工程變更通知單;SWR中文全稱為:特殊需求工作單,必須由各相關(guān)部門會簽,文件中心分發(fā),方為有效;
22. 5S的具體內(nèi)容為整理、整頓、清掃、清潔、素養(yǎng);
23. PCB真空包裝的目的是防塵及防潮;
24. 品質(zhì)政策為:全面品管、貫徹制度、提供客戶需求的品質(zhì);全員參與、及時處理、以達成零缺點的目標;
25. 品質(zhì)三不政策為:不接受不良品、不制造不良品、不流出不良品;
26. QC七大手法是指檢查表、層別法、柏拉圖、因果圖、散布圖、直方圖、控制圖;
27.錫膏的成份包含:金屬粉末、溶濟、助焊劑、抗垂流劑、活性劑;按重量分,金屬粉末占85-92%,按體積分金屬粉末占50%;
28. 錫膏使用時必須從冰箱中取出回溫,目的是:讓冷藏的錫膏溫度恢復到常溫,以利印刷。如果不回溫則在PCBA進Reflow后易產(chǎn)生的不良為錫珠;
29. 機器之文件供給模式有:準備模式、優(yōu)先交換模式、交換模式和速接模式;
30. SMT的PCB定位方式有:真空定位、機械孔定位、雙邊夾定位及板邊定位;
31. 絲印(符號)為272的電阻,阻值為2700Ω,阻值為4.8MΩ的電阻的符號(絲印)為485;
32. BGA本體上的絲印包含廠商、廠商料號、規(guī)格和Datecode/(Lot No)等信息;
33. 208pinQFP的pitch為0.5mm;
34. QC七大手法中,魚骨圖強調(diào)尋找因果關(guān)系;
35. CPK指: 目前實際狀況下的制程能力;
36. 助焊劑在恒溫區(qū)開始揮發(fā)進行化學清洗動作;
37. 理想的冷卻區(qū)曲線和回流區(qū)曲線鏡像關(guān)系;
38. Sn62Pb36Ag2之焊錫膏主要試用于陶瓷板;
39. 以松香為主的助焊劑可分四種:R、RA、RSA、RMA;
40. RSS曲線為升溫→恒溫→回流→冷卻曲線;
41. 我們現(xiàn)使用的PCB材質(zhì)為FR-4;
42. PCB翹曲規(guī)格不超過其對角線的0.7%;
43. STENCIL制作激光切割是可以再重工的方法;
44. 目前計算機主板上常用的BGA球徑為0.76mm;
45. ABS系統(tǒng)為絕對坐標;
46. 陶瓷芯片電容ECA-0105Y-K31誤差為±10%;
47. 目前使用的計算機的PCB,其材質(zhì)為: 玻纖板;
48. SMT零件包裝其卷帶式盤直徑為13寸、7寸;
49. SMT一般鋼板開孔要比PCB PAD小4um可以防止錫球不良之現(xiàn)象;
50. 按照《PCBA檢驗規(guī)范》當二面角>90度時表示錫膏與波焊體無附著性;
51. IC拆包后濕度顯示卡上濕度在大于30%的情況下表示IC受潮且吸濕;
52. 錫膏成份中錫粉與助焊劑的重量比和體積比正確的是90%:10%,50%:50%;
53. 早期之表面粘裝技術(shù)源自于20世紀60年代中期之軍用及航空電子領(lǐng)域;
54. 目前SMT最常使用的焊錫膏Sn和Pb的含量各為:63Sn 37Pb;共晶點為183℃;
55. 常見的帶寬為8mm的紙帶料盤送料間距為4mm;
56. 在20世紀70年代早期,業(yè)界中新出現(xiàn)一種SMD,為“密封式無腳芯片載體”,常以LCC簡代之;
57. 符號為272之組件的阻值應為2.7K歐姆;
58. 100NF組件的容值與0.10uf相同;
60. SMT使用量最大的電子零件材質(zhì)是陶瓷;
61. 回焊爐溫度曲線其曲線最高溫度215C最適宜;
62. 錫爐檢驗時,錫爐的溫度245℃較合適;
63. 鋼板的開孔型式方形、三角形、圓形,星形,本磊形;
64. SMT段排阻有無方向性無;
65. 目前市面上售之錫膏,實際只有4小時的粘性時間;
66. SMT設(shè)備一般使用之額定氣壓為5KG/cm2;
67. SMT零件維修的工具有:烙鐵、熱風拔取器、吸錫槍、鑷子;
68. QC分為:IQC、IPQC、。FQC、OQC;
69. 高速貼片機可貼裝電阻、電容、IC、晶體管;包裝方式為 Reel、Tray兩種,Tube不適合高速貼片機;
70. 靜電的特點:小電流、受濕度影響較大;
71. 正面PTH,反面SMT過錫爐時使用何種焊接方式擾流雙波焊;
72. SMT常見之檢驗方法: 目視檢驗、X光檢驗、機器視覺檢驗;
73. 鉻鐵修理零件熱傳導方式為傳導對流;
74. 目前BGA材料其錫球的主要成份Sn90 Pb10,SAC305,SAC405;
75. 鋼板的制作方法雷射切割、電鑄法、化學蝕刻;
76. 迥焊爐的溫度按:利用測溫器量出適用之溫度;
77. 迥焊爐之SMT半成品于出口時其焊接狀況是零件固定于PCB上;
78. 現(xiàn)代質(zhì)量管理發(fā)展的歷程TQC-TQA-TQM;
79. ICT測試是針床測試;
80. ICT之測試能測電子零件采用靜態(tài)測試;
81. 焊錫特性是融點比其它金屬低、物理性能滿足焊接條件、低溫時流動性比其它金屬好;
82. 迥焊爐零件更換制程條件變更要重新測量測度曲線;
83. 西門子80F/S屬于較電子式控制傳動;
84. 錫膏測厚儀是利用Laser光測:錫膏度、錫膏厚度、錫膏印出之寬度;
85. SMT零件供料方式有振動式供料器、盤狀供料器、卷帶式供料器;
86. SMT設(shè)備運用哪些機構(gòu):凸輪機構(gòu)、邊桿機構(gòu)、螺桿機構(gòu)、滑動機構(gòu);
87. 目檢段若無法確認則需依照何項作業(yè)BOM、廠商確認、樣品板;
88. 若零件包裝方式為12w8P,則計數(shù)器Pinth尺寸須調(diào)整每次進8mm;
89. 迥焊機的種類: 熱風式迥焊爐、氮氣迥焊爐、laser迥焊爐、紅外線迥焊爐;
90. SMT零件樣品試作可采用的方法:流線式生產(chǎn)、手印機器貼裝、手印手貼裝;
91. 常用的MARK形狀有:圓形,“十”字形、正方形,菱形,三角形,萬字形;
92. SMT段因Reflow Profile設(shè)置不當,可能造成零件微裂的是預熱區(qū)、冷卻區(qū);
93. SMT段零件兩端受熱不均勻易造成:空焊、偏位、墓碑;
94. 高速機與泛用機的Cycle time應盡量均衡;
95. 品質(zhì)的真意就是第一次就做好;
96. 貼片機應先貼小零件,后貼大零件;
97. BIOS是一種基本輸入輸出系統(tǒng),全英文為:Base Input/Output System;
98. SMT零件依據(jù)零件腳有無可分為LEAD與LEADLESS兩種;
99. 常見的自動放置機有三種基本型態(tài),接續(xù)式放置型,連續(xù)式放置型和大量移送式放置機;
100. SMT制程中沒有LOADER也可以生產(chǎn);
101. SMT流程是送板系統(tǒng)-錫膏印刷機-高速機-泛用機-迥流焊-收板機;
102. 溫濕度敏感零件開封時,濕度卡圓圈內(nèi)顯示顏色為藍色,零件方可使用;
103. 尺寸規(guī)格20mm不是料帶的寬度;
104. 制程中因印刷不良造成短路的原因:a. 錫膏金屬含量不夠,造成塌陷b.鋼板開孔過大,造成錫量過多c. 鋼板品質(zhì)不佳,下錫不良,換激光切割模板d.Stencil背面殘有錫膏,降低刮刀壓力,采用適當?shù)腣ACUUM和SOLVENT;
105.一般回焊爐Profile各區(qū)的主要工程目的:a.預熱區(qū);工程目的:錫膏中容劑揮發(fā)。b.均溫區(qū);工程目的:助焊劑活化,去除氧化物;蒸發(fā)多余水份。c.回焊區(qū);工程目的:焊錫熔融。d.冷卻區(qū);工程目的:合金焊點形成,零件腳與焊盤接為一體;
106. SMT制程中,錫珠產(chǎn)生的主要原因:PCB PAD設(shè)計不良、鋼板開孔設(shè)計不良、置件深度或置件壓力過大、Profile曲線上升斜率過大,錫膏坍塌、錫膏粘度過低。
SMT行業(yè)名詞解釋
AAccuracy(精度): 測量結(jié)果與目標值之間的差額。
Additive Process(加成工藝):一種制造PCB導電布線的方法,通過選擇性的在板層上沉淀導電材料(銅、錫等)。
Adhesion(附著力): 類似于分子之間的吸引力。
Aerosol(氣溶劑): 小到足以空氣傳播的液態(tài)或氣體粒子。
Angle of attack(迎角):絲印刮板面與絲印平面之間的夾角。
AnisotropIC adhesive(各異向性膠):一種導電性物質(zhì),其粒子只在Z軸方向通過電流。
Annular ring(環(huán)狀圈):鉆孔周圍的導電材料。
Application specific integrated circuit (ASIC特殊應用集成電路):客戶定做得用于專門用途的電路。
Array(列陣):一組元素,比如:錫球點,按行列排列。
Artwork(布線圖):PCB的導電布線圖,用來產(chǎn)生照片原版,可以任何比例制作,但一般為3:1或4:1。
Automated test equipment (ATE自動測試設(shè)備):為了評估性能等級,設(shè)計用于自動分析功能或靜態(tài)參數(shù)的設(shè)備,也用于故障離析。
Automatic optical inspection (AOI自動光學檢查):在自動系統(tǒng)上,用相機來檢查模型或物體。
BBall grid array (BGA球柵列陣):集成電路的包裝形式,其輸入輸出點是在元件底面上按柵格樣式排列的錫球。
Blind via(盲通路孔):PCB的外層與內(nèi)層之間的導電連接,不繼續(xù)通到板的另一面。
Bond lift-off(焊接升離):把焊接引腳從焊盤表面(電路板基底)分開的故障。
Bonding agent(粘合劑):將單層粘合形成多層板的膠劑。 Bridge(錫橋):把兩個應該導電連接的導體連接起來的焊錫,引起短路。
Buried via(埋入的通路孔):PCB的兩個或多個內(nèi)層之間的導電連接(即,從外層看不見的)。
CCAD/CAM system(計算機輔助設(shè)計與制造系統(tǒng)):計算機輔助設(shè)計是使用專門的軟件工具來設(shè)計印刷電路結(jié)構(gòu);計算機輔助制造把這種設(shè)計轉(zhuǎn)換成實際的產(chǎn)品。這些系統(tǒng)包括用于數(shù)據(jù)處理和儲存的大規(guī)模內(nèi)存、用于設(shè)計創(chuàng)作的輸入和把儲存的信息轉(zhuǎn)換成圖形和報告的輸出設(shè)備
Capillary action(毛細管作用):使熔化的焊錫,逆著重力,在相隔很近的固體表面流動的一種自然現(xiàn)象。
Chip on board (COB板面芯片):一種混合技術(shù),它使用了面朝上膠著的芯片元件,傳統(tǒng)上通過飛線專門地連接于電路板基底層。
Circuit tester(電路測試機):一種在批量生產(chǎn)時測試PCB的方法。包括:針床、元件引腳腳印、導向探針、內(nèi)部跡線、裝載板、空板、和元件測試。
Cladding(覆蓋層):一個金屬箔的薄層粘合在板層上形成PCB導電布線。
Coefficient of the thermal expansion(溫度膨脹系數(shù)):當材料的表面溫度增加時,測量到的每度溫度材料膨脹百萬分率(ppm)
Cold cleaning(冷清洗):一種有機溶解過程,液體接觸完成焊接后的殘渣清除。
Cold solder joint(冷焊錫點):一種反映濕潤作用不夠的焊接點,其特征是,由于加熱不足或清洗不當,外表灰色、多孔。
Component density(元件密度):PCB上的元件數(shù)量除以板的面積。
Conductive epoxy(導電性環(huán)氧樹脂):一種聚合材料,通過加入金屬粒子,通常是銀,使其通過電流。
Conductive ink(導電墨水):在厚膠片材料上使用的膠劑,形成PCB導電布線圖。
Conformal coating(共形涂層):一種薄的保護性涂層,應用于順從裝配外形的PCB。
Copper foil(銅箔):一種陰質(zhì)性電解材料,沉淀于電路板基底層上的一層薄的、連續(xù)的金屬箔, 它作為PCB的導電體。它容易粘合于絕緣層,接受印刷保護層,腐蝕后形成電路圖樣。
Copper mirror test(銅鏡測試):一種助焊劑腐蝕性測試,在玻璃板上使用一種真空沉淀薄膜。
Cure(烘焙固化):材料的物理性質(zhì)上的變化,通過化學反應,或有壓/無壓的對熱反應。
Cycle rate(循環(huán)速率):一個元件貼片名詞,用來計量從拿取、到板上定位和返回的機器速度,也叫測試速度。
DData recorder(數(shù)據(jù)記錄器):以特定時間間隔,從著附于PCB的熱電偶上測量、采集溫度的設(shè)備。
Defect(缺陷):元件或電路單元偏離了正常接受的特征。
Delamination(分層):板層的分離和板層與導電覆蓋層之間的分離。
Desoldering(卸焊):把焊接元件拆卸來修理或更換,方法包括:用吸錫帶吸錫、真空(焊錫吸管)和熱拔。
Dewetting(去濕):熔化的焊錫先覆蓋、后收回的過程,留下不規(guī)則的殘渣。 DFM(為制造著想的設(shè)計):以最有效的方式生產(chǎn)產(chǎn)品的方法,將時間、成本和可用資源考慮在內(nèi)。
Dispersant(分散劑):一種化學品,加入水中增加其去顆粒的能力。
Documentation(文件編制):關(guān)于裝配的資料,解釋基本的設(shè)計概念、元件和材料的類型與數(shù)量、專門的制造指示和最新版本。使用三種類型:原型機和少數(shù)量運行、標準生產(chǎn)線和/或生產(chǎn)數(shù)量、以及那些指定實際圖形的政府合約。
Downtime(停機時間):設(shè)備由于維護或失效而不生產(chǎn)產(chǎn)品的時間。
Durometer(硬度計):測量刮板刀片的橡膠或塑料硬度。
EEnvironmental test(環(huán)境測試):一個或一系列的測試,用于決定外部對于給定的元件包裝或裝配的結(jié)構(gòu)、機械和功能完整性的總影響。
Eutectic solders(共晶焊錫):兩種或更多的金屬合金,具有最低的熔化點,當加熱時,共晶合金直接從固態(tài)變到液態(tài),而不經(jīng)過塑性階段。
FFabrication():設(shè)計之后裝配之前的空板制造工藝,單獨的工藝包括疊層、金屬加成/減去、鉆孔、電鍍、布線和清潔。
Fiducial(基準點):和電路布線圖合成一體的專用標記,用于機器視覺,以找出布線圖的方向和位置。
Fillet(焊角):在焊盤與元件引腳之間由焊錫形成的連接。即焊點。
Fine-pitch technology (FPT密腳距技術(shù)):表面貼片元件包裝的引腳中心間隔距離為 0.025"(0.635mm)或更少。
Fixture(夾具):連接PCB到處理機器中心的裝置。
Flip chip(倒裝芯片):一種無引腳結(jié)構(gòu),一般含有電路單元。 設(shè)計用于通過適當數(shù)量的位于其面上的錫球(導電性粘合劑所覆蓋),在電氣上和機械上連接于電路。
Full liquidus temperature(完全液化溫度):焊錫達到最大液體狀態(tài)的溫度水平,最適合于良好濕潤。
Functional test(功能測試):模擬其預期的操作環(huán)境,對整個裝配的電器測試。
GGolden boy(金樣):一個元件或電路裝配,已經(jīng)測試并知道功能達到技術(shù)規(guī)格,用來通過比較測試其它單元。 HHalides(鹵化物):含有氟、氯、溴、碘或砹的化合物。是助焊劑中催化劑部分,由于其腐蝕性,必須清除。
Hard water(硬水):水中含有碳酸鈣和其它離子,可能聚集在干凈設(shè)備的內(nèi)表面并引起阻塞。
Hardener(硬化劑):加入樹脂中的化學品,使得提前固化,即固化劑。
IIn-circuit test(在線測試):一種逐個元件的測試,以檢驗元件的放置位置和方向。
JJust-in-time (JIT剛好準時):通過直接在投入生產(chǎn)前供應材料和元件到生產(chǎn)線,以把庫存降到最少。
LLead configuration(引腳外形):從元件延伸出的導體,起機械與電氣兩種連接點的作用。
Line certification(生產(chǎn)線確認):確認生產(chǎn)線順序受控,可以按照要求生產(chǎn)出可靠的PCB。
MMachine vision(機器視覺):一個或多個相機,用來幫助找元件中心或提高系統(tǒng)的元件貼裝精度。
Mean time between failure (MTBF平均故障間隔時間):預料可能的運轉(zhuǎn)單元失效的平均統(tǒng)計時間間隔,通常以每小時計算,結(jié)果應該表明實際的、預計的或計算的。
NNonwetting(不熔濕的):焊錫不粘附金屬表面的一種情況。由于待焊表面的污染,不熔濕的特征是可見基底金屬的裸露。
OOmegameter(奧米加表):一種儀表,用來測量PCB表面離子殘留量,通過把裝配浸入已知高電阻率的酒精和水的混合物,其后,測得和記錄由于離子殘留而引起的電阻率下降。
Open(開路):兩個電氣連接的點(引腳和焊盤)變成分開,原因要不是焊錫不足,要不是連接點引腳共面性差。
Organic activated (OA有機活性的):有機酸作為活性劑的一種助焊系統(tǒng),水溶性的。
PPackaging density(裝配密度):PCB上放置元件(有源/無源元件、連接器等)的數(shù)量;表達為低、中或高。
Photoploter(相片繪圖儀):基本的布線圖處理設(shè)備,用于在照相底片上生產(chǎn)原版PCB布線圖(通常為實際尺寸)。
Pick-and-place(拾取-貼裝設(shè)備):一種可編程機器,有一個機械手臂,從自動供料器拾取元件,移動到PCB上的一個定點,以正確的方向貼放于正確的位置。
Placement equipment(貼裝設(shè)備):結(jié)合高速和準確定位地將元件貼放于PCB的機器,分為三種類型:SMD的大量轉(zhuǎn)移、X/Y定位和在線轉(zhuǎn)移系統(tǒng),可以組合以使元件適應電路板設(shè)計。
RReflow soldering(回流焊接):通過各個階段,包括:預熱、穩(wěn)定/干燥、回流峰值和冷卻,把表面貼裝元件放入錫膏中以達到永久連接的工藝過程。
Repair(修理):恢復缺陷裝配的功能的行動。
Repeatability(可重復性):精確重返特性目標的過程能力。一個評估處理設(shè)備及其連續(xù)性的指標。
Rework(返工):把不正確裝配帶回到符合規(guī)格或合約要求的一個重復過程。
Rheology(流變學):描述液體的流動、或其粘性和表面張力特性,如,錫膏。
SSaponifier(皂化劑):一種有機或無機主要成份和添加劑的水溶液,用來通過諸如可分散清潔劑,促進松香和水溶性助焊劑的清除。
Schematic(原理圖):使用符號代表電路布置的圖,包括電氣連接、元件和功能。
Semi-aqueous cleaning(不完全水清洗):涉及溶劑清洗、熱水沖刷和烘干循環(huán)的技術(shù)。
Shadowing(陰影):在紅外回流焊接中,元件身體阻隔來自某些區(qū)域的能量,造成溫度不足以完全熔化錫膏的現(xiàn)象。
Silver chromate test(鉻酸銀測試):一種定性的、鹵化離子在RMA助焊劑中存在的檢查。
(RMA可靠性、可維護性和可用性) Slump(坍落):在模板絲印后固化前,錫膏、膠劑等材料的擴散。
Solder bump(焊錫球):球狀的焊錫材料粘合在無源或有源元件的接觸區(qū),起到與電路焊盤連接的作用。
Solderability(可焊性):為了形成很強的連接,導體(引腳、焊盤或跡線)熔濕的(變成可焊接的)能力。
Soldermask(阻焊):印刷電路板的處理技術(shù),除了要焊接的連接點之外的所有表面由塑料涂層覆蓋住。
Solids(固體):助焊劑配方中,松香的重量百分比,
(固體含量) Solidus(固相線):一些元件的焊錫合金開始熔化(液化)的溫度。
Statistical process control (SPC統(tǒng)計過程控制):用統(tǒng)計技術(shù)分析過程輸出,以其結(jié)果來指導行動,調(diào)整和/或保持品質(zhì)控制狀態(tài)。
Storage life(儲存壽命):膠劑的儲存和保持有用性的時間。
Subtractive process(負過程):通過去掉導電金屬箔或覆蓋層的選擇部分,得到電路布線。
Surfactant(表面活性劑):加入水中降低表面張力、改進濕潤的化學品。 Syringe(注射器):通過其狹小開口滴出的膠劑容器。
TTape-and-reel(帶和盤):貼片用的元件包裝,在連續(xù)的條帶上,把元件裝入凹坑內(nèi),凹坑由塑料帶蓋住,以便卷到盤上,供元件貼片機用。
Thermocouple(熱電偶):由兩種不同金屬制成的傳感器,受熱時,在溫度測量中產(chǎn)生一個小的直流電壓。
Type I, II, III assembly(第一、二、三類裝配):板的一面或兩面有表面貼裝元件的PCB(I);有引腳元件安裝在主面、有SMD元件貼裝在一面或兩面的混合技術(shù)(II);以無源SMD元件安裝在第二面、引腳(通孔)元件安裝在主面為特征的混合技術(shù)(III)。
Tombstoning(元件立起):一種焊接缺陷,片狀元件被拉到垂直位置,使另一端不焊。
UUltra-fine-pitch(超密腳距):引腳的中心對中心距離和導體間距為0.010”(0.25mm)或更小。
VVapor degreaser(汽相去油器):一種清洗系統(tǒng),將物體懸掛在箱內(nèi),受熱的溶劑汽體凝結(jié)于物體表面。
Void(空隙):錫點內(nèi)部的空穴,在回流時氣體釋放或固化前夾住的助焊劑殘留所形成。
YYield(產(chǎn)出率):制造過程結(jié)束時使用的元件和提交生產(chǎn)的元件數(shù)量比率。
SMT 之IMC
簡介
IMC系Intermetallic compound 之縮寫,筆者將之譯為"介面合金共化物"。廣義上說是指某些金屬相互緊密接觸之介面間,會產(chǎn)生一種原子遷移互動的行為,組成一層類似合金的"化合物",并可寫出分子式。在焊接領(lǐng)域的狹義上是指銅錫、金錫、鎳錫及銀錫之間的共化物。其中尤以銅錫間之良性Cu6Sn5(Eta Phase)及惡性Cu3Sn(Epsilon Phase)最為常見,對焊錫性及焊點可靠度(即焊點強度)兩者影響最大,特整理多篇論文之精華以詮釋之
定義
能夠被錫鉛合金焊料(或稱焊錫Solder)所焊接的金屬,如銅、鎳、金、銀等,其焊錫與被焊盤金屬之間,在高溫中會快速形成一薄層類似"錫合金"的化合物。此物起源于錫原子及被焊金屬原子之相互結(jié)合、滲入、遷移、及擴散等動作,而在冷卻固化之后立即出現(xiàn)一層薄薄的"共化物",且事后還會逐漸成長增厚。此類物質(zhì)其老化程度受到錫原子與底金屬原子互相滲入的多少,而又可分出好幾道層次來。這種由焊錫與其被焊金屬介面之間所形成的各種共合物,統(tǒng)稱Intermetallic Compound 簡稱IMC,本文中僅討論含錫的IMC,將不深入涉及其他的IMC。
一般性質(zhì)
由于IMC曾是一種可以寫出分子式的"準化合物",故其性質(zhì)與原來的金屬已大不相同,對整體焊點強度也有不同程度的影響,首先將其特性簡述于下:
◎IMC在PCB高溫焊接或錫鉛重熔(即熔錫板或噴錫)時才會發(fā)生,有一定的組成及晶體結(jié)構(gòu),且其生長速度與溫度成正比,常溫中較慢。一直到出現(xiàn)全鉛的阻絕層(Barrier)才會停止(見圖六)。
◎ IMC本身具有不良的脆性,將會損及焊點之機械強度及壽命,其中尤其對抗勞強度(Fatigue Strength)危害最烈,且其熔點也較金屬要高。
◎由于焊錫在介面附近得錫原子會逐漸移走,而與被焊金屬組成IMC,使得該處的錫量減少,相對的使得鉛量之比例增加,以致使焊點展性增大(Ductillity)及固著強度降低,久之甚至帶來整個焊錫體的松弛。
◎ 一旦焊墊商原有的熔錫層或噴錫層,其與底銅之間已出現(xiàn)"較厚"間距過小的IMC后,對該焊墊以后再續(xù)作焊接時會有很大的妨礙;也就是在焊錫性(Solderability)或沾錫性(Wettability)上都將會出現(xiàn)劣化的情形。
◎焊點中由于錫銅結(jié)晶或錫銀結(jié)晶的滲入,使得該焊錫本身的硬度也隨之增加,久之會有脆化的麻煩。
◎ IMC會隨時老化而逐漸增厚,通常其已長成的厚度,與時間大約形成拋物線的關(guān)系,即:
δ=k √t,
k=k exp(-Q/RT)
δ表示t時間后IMC已成長的厚度。
K表示在某一溫度下IMC的生長常數(shù)。
T表示絕對溫度。
R表示氣體常數(shù),即8.32 J/mole。
Q表示IMC生長的活化能。
K=IMC對時間的生長常數(shù),以nm / √秒或μm / √日(1μm / √日=3.4nm / √秒。
現(xiàn)將四種常見含錫的IMC在不同溫度下,其生長速度比較在下表的數(shù)字中:
表1 各種IMC在不同溫度中之生長速度(nm / √s)
金屬介面20℃ 100℃135℃ 150℃170℃
1、錫/ 金40;
2、錫/ 銀0.08 17-35;
3、錫/ 鎳0.08 1 5;
4、錫/ 銅0.26 1.4 3.8 10。
[注] 在170℃高溫中銅面上,各種含錫合金IMC層的生長速率,也有所不同;如熱浸錫鉛為5nm/s,霧狀純錫鍍層為7.7(以下單位相同),錫鉛比30/70的皮膜為11.2,錫鉛比70/30的皮膜為12.0,光澤鍍純錫為3.7,其中以最后之光澤鍍錫情況較好。
焊錫性與表面能
若純就可被焊接之金屬而言,影響其焊錫性(Solderability)好壞的機理作用甚多,其中要點之一就是"表面自由能"(Surface Free Energy,簡稱時可省掉Free)的大小。也就是說可焊與否將取決于:
(1) 被焊底金屬表面之表面能(Surface Energy);
(2) 焊錫焊料本身的"表面能"等二者而定。
凡底金屬之表面能大于焊錫本身之表面能時,則其沾錫性會非常好,反之則沾錫性會變差。也就是說當?shù)捉饘僦砻婺軠p掉焊錫表面能而得到負值時,將出現(xiàn)縮錫(Dewetting),負值愈大則焊錫愈差,甚至造成不沾錫(Non-Wetting)的惡劣地步。
新鮮的銅面在真空中測到的"表面能"約為1265達因/公分,63/37的焊錫加熱到共熔點(Eutectic Point 183℃)并在助焊劑的協(xié)助下,其表面能只得380達因/公分,若將二者焊一起時,其沾錫性將非常良好。然而若將上述新鮮潔凈的銅面刻意放在空氣中經(jīng)歷2小時后,其表面能將會遽降到25達因/公分,與380相減不但是負值(-355),而且相去甚遠,焊錫自然不會好。因此必須要靠強力的助焊劑除去銅面的氧化物,使之再活化及表面能之再次提高,并超過焊錫本身的表面能時,焊錫性才會有良好的成績。
合金共化物
當熔融態(tài)的焊錫落在潔銅面的瞬間,將會立即發(fā)生沾錫(Wetting俗稱吃錫)的焊接動作。此時也立即會有錫原子擴散(Diffuse)到銅層中去,而銅原子也同時會擴散進入焊錫中,二者在交接口上形成良性且必須者Cu6Sn5的IMC,稱為η-phase(讀做Eta相),此種新生"準化合物"中含錫之重量比約占60%。若以少量的銅面與多量焊錫遭遇時,只需3-5秒鐘其IMC即可成長到平衡狀態(tài)的原度,如240℃的0.5μm到340℃的0.9μm。然而在此交會互熔的同時,底銅也會有一部份熔進液錫的主體錫池中,形成負面的污染。
(a) 最初狀態(tài):當焊錫著落在清潔的銅面上將立即有η-phase Cu6Sn5生成,即圖中之(2)部分。
(b) 錫份滲耗期:焊錫層中的錫份會不斷的流失而滲向IMC去組新的Cu6Sn5,而同時銅份也會逐漸滲向原有的η-phase層次中而去組成新的Cu3Sn,即圖中之(5)。此時焊錫中之錫量將減少,使得鉛量在比例上有所增加,若于其外表欲再行焊接時將會發(fā)生縮錫。
(c) 多鉛之阻絕層:當焊錫層中的錫份不斷滲走再去組成更厚的IMC時,逐漸使得本身的含鉛比例增加,最后終于在全鉛層的擋路下阻絕了錫份的滲移。
(d) IMC的曝露:由于錫份的流失,造成焊錫層的松散不堪而露出IMC底層,而終致到達不沾錫的下場(Non-wetting)。
高溫作業(yè)后經(jīng)長時老化的過程中,在Eta-phase良性IMC與銅底材之間,又會因銅量的不斷滲入Cu6Sn5中,而逐漸使其局部組成改變?yōu)镃u3Sn的惡性ε-phase(又讀做Epsilon相)。其中銅量將由早先η-phase的40%增加到ε-phase的66%。此種老化劣化之現(xiàn)象,隨著時間之延長及溫度之上升而加劇,且溫度的影響尤其強烈。由前述"表面能"的觀點可看出,這種含銅量甚高的惡性ε-phase,其表面能的數(shù)字極低,只有良性η-phase的一半。因而Cu3Sn是一種對焊錫性頗有妨礙的IMC。
然而早先出現(xiàn)的良性η-phase Cu6Sn5,卻是良好焊錫性必須的條件。沒有這種良性Eta相的存在,就根本不可能完成良好的沾錫,也無法正確的焊牢。換言之,必需要在銅面上首先生成Eta-phase的IMC,其焊點才有強度。否則焊錫只是在附著的狀態(tài)下暫時冷卻固化在銅面上而已,這種焊點就如同大樹沒有根一樣,毫無強度可言。錫銅合金的兩種IMC在物理結(jié)構(gòu)上也不相同。其中惡性的ε-phase(Cu3Sn)常呈現(xiàn)柱狀結(jié)晶(Columnar Structure),而良性的η-phase(Cu6Sn5)卻是一種球狀組織(Globular)。下圖8此為一銅箔上的焊錫經(jīng)長時間老化后,再將其彎折磨平拋光以及微蝕后,這在SEM2500倍下所攝得的微切片實像,兩IMC的組織皆清晰可見,二者之硬度皆在500微硬度單位左右。
在IMC的增厚過程中,其結(jié)晶粒子(Grains)也會隨時在變化。由于粒度的變化變形,使得在切片畫面中量測厚度也變得比較困難。一般切片到達最后拋光完成后,可使用專門的微蝕液(NaOH50/gl,加1,2-Nitrphenol 35ml/l,70℃下操作),并在超聲波協(xié)助下,使其能咬出清晰的IMC層次,而看到各層結(jié)晶解里面的多種情況,F(xiàn)將錫銅合金的兩種IMC性質(zhì)比較如下: 命名分子式 含錫量W% 出現(xiàn)經(jīng)過位置所在 顏色結(jié)晶 性能表面能η-phase(Eta) Cu6Sn5 60% 高溫融錫沾焊到清潔銅面時立即生成介于焊錫或純錫與銅之間的介面。
白色 球狀
組織
良性IMC
微焊接強度之必須甚高
ε-phase(Epsilon) Cu3Sn 30% 焊后經(jīng)高溫或長期老化而逐漸發(fā)生
介于Cu6Sn5與銅面之間
灰色柱狀
結(jié)晶
惡性IMC
將造成縮錫或不沾錫 較低只有Eta的一半,非常有趣的是,單純Cu6Sn5的良性IMC,雖然分子是完全相同,但當生長環(huán)境不同時外觀卻極大的差異。如將清潔銅面熱浸于熔融態(tài)的純錫中,此種錫量與熱量均極度充足下,所生成的Eta良性IMC之表面呈鵝卵石狀。但若改成錫鉛合金(63/37)之錫膏與熱風再銅面上熔焊時,亦即錫量與熱量不太充足之環(huán)境,居然長出另一種一短棒狀的IMC外表(注意銅與鉛是不會產(chǎn)生IMC的,且兩者之對沾錫(wetting)與散錫(Spreading)的表現(xiàn)也截然不同。再者銅錫之IMC層一旦遭到氧化時,就會變成一種非常頑強的皮膜,即使薄到5層原子厚度的1.5nm,再猛的助焊劑也都奈何不了它。這就是為什么PTH孔口錫薄處不易吃錫的原因(C.Lea的名著A scientific Guide to SMT之P.337有極清楚的說明),故知焊點之主體焊錫層必須稍厚時,才能盡量保證焊錫性于不墜。事實上當"沾錫"(Wetting)之初,液錫以很小的接觸角(Contact Angle)高溫中迅速向外擴張(Spreading)地盤的同時,也另在地盤內(nèi)的液錫和固銅之間產(chǎn)生交流,而向下扎根生成IMC,熱力學方式之步驟,即在說明其假想動作的細節(jié)。
錫銅IMC的老化
由上述可知錫銅之間最先所形成的良性η-phase(Cu6Sn5),已成為良好焊接的必要條件。唯有這IMC的存在才會出現(xiàn)強度好的焊點。并且也清楚了解這種良好的IMC還會因銅的不斷侵入而逐漸劣化,逐漸變?yōu)椴涣嫉?epsilon;-phase(Cu3Sn)。此兩種IMC所構(gòu)成的總厚度將因溫度上升而加速長厚,且與時俱增。下表3.即為各種狀況下所測得的IMC總厚度。凡其總IMC厚度愈厚者,對以后再進行焊接時之焊錫性也愈差。
表3. 不銅溫度中錫銅IMC之不同厚度
所處狀況IMC厚度(mils)
熔錫板(指炸油或IR) 0.03~0.04
噴錫板0.02~0.037
170℃中烤24小時 0.22以上
125℃中烤24小時0.046
70℃中烤24小時 0.017
70℃中存貯40天0.05
30℃中存貯2年 0.05
20℃中存貯5年0.05
組裝之單次焊接后 0.01~0.02
圖12. 錫銅IMC的老化增厚,除與時間的平方根成比例關(guān)系外,并受到環(huán)境溫度的強烈影響,在斜率上有很大的改變。
在IMC老化過程中,原來錫鉛層中的錫份不斷的輸出,用與底材銅共組成合金共化物,因而使得原來鍍錫鉛或噴錫鉛層中的錫份逐漸減少,進而造成鉛份在比例上的不斷增加。一旦當IMC的總厚度成長到達整個錫鉛層的一半時,其含錫量也將由原來的60%而降到40%,此時其沾錫性的惡化當然就不言而喻。并由底材銅份的無限量供應,但表層皮膜中的錫量卻愈來愈少,因而愈往后來所形成的IMC,將愈趨向惡性的Cu3Sn。
且請務必注意,一旦環(huán)境超過60℃時,即使新生成的Cu6Sn5也開始轉(zhuǎn)變長出Cu3Sn來。一旦這種不良的ε-phase成了氣候,則焊點主體中之錫不斷往介面溜走,致使整個主體皮膜中的鉛量比例增加,后續(xù)的焊接將會呈現(xiàn)縮錫(Dewetting)的場面。這種不歸路的惡化情形,又將隨著原始錫鉛皮膜層的厚薄而有所不同,越薄者還會受到空氣中氧氣的助虐,使得劣化情形越快。故為了免遭此一額外的苦難,一般規(guī)范都要求錫鉛皮膜層至少都要在0.3mil以上。
老化后的錫鉛皮膜,除了不良的IMC及表面能太低,而導致縮錫的效應外,鍍銅層中的雜質(zhì)如氧化物、有機光澤劑等共鍍物,以及錫鉛鍍層中有機物或其它雜質(zhì)等,也都會朝向IMC處移動集中,而使得縮錫現(xiàn)象雪上加霜更形惡化。
從許多種前人的試驗及報告文獻中,可知有三種加速老化的模式,可以類比出上述兩種焊錫性劣化及縮錫現(xiàn)象的試驗如下∶
◎ 在高溫飽和水蒸氣中曝置1~24小時。
◎在125~150℃的干烤箱中放置4~16小時。
◎ 在高溫水蒸氣加氧氣的環(huán)境中放置1小時;之后僅在水蒸氣中放置24小時;再另于155℃的干烤箱中放置4小時;及在40℃,90~95%RH環(huán)境中放置10天。如此之連續(xù)折騰約等于1年時間的自然老化。在經(jīng)此等高溫高濕的老化條件下,錫鉛皮膜表面及與銅之介面上會出現(xiàn)氧化、腐蝕,及錫原子耗失(Depletion)等,皆將造成焊錫性的劣化。
錫金IMC
焊錫與金層之間的IMC生長比銅錫合金快了很多,由先后出現(xiàn)的順序所得的分子式有AuSn,AuSn2,AuSn4等。在150℃中老化300小時后,其IMC居然可增長到50μm(或2mil)之厚。因而鍍金零件腳經(jīng)過焊錫之后,其焊點將因IMC的生成太快,而變的強度減弱脆性增大。幸好仍被大量柔軟的焊錫所包圍,故內(nèi)中缺點尚不曝露出來。又若當金層很薄時,例如是把薄金層鍍在銅面上再去焊錫,則其焊點強度也很快就會變差,其劣化程度可由耐疲勞強度試驗周期數(shù)之減少而清楚得知。
曾有人故意以熱壓打線法(Thermo-Compression,注意所用溫度需低于錫鉛之熔點)將金線壓入焊錫中,于是黃金就開始向四周的焊錫中擴散,逐漸形成如圖中白色散開的IMC。該金線原來的直徑為45μm,經(jīng)155℃中老化460小時后,竟然完全消耗殆盡,其效應實在相當驚人。但若將金層鍍在鎳面上,或在焊錫中故意加入少許的銦,即可大大減緩這種黃金擴散速度達5倍之多。
錫銀IMC
錫與銀也會迅速的形成介面合金共化物Ag3Sn,使得許多鍍銀的零件腳在焊錫之后,很快就會發(fā)生。
銀份流失而進入焊錫之中,使得銀腳焊點的結(jié)構(gòu)強度迅速惡化,特稱為"滲銀Silver leaching"。此種焊后可靠性的問題,曾在許多以鈀層及銀層為導體的“厚膜技術(shù)"(Thick Film Technology)中發(fā)生過,SMT中也不乏前例。若另將錫鉛共融合金比例63/37的焊錫成分,予以小幅的改變而加入2%的銀,使成為62/36/2的比例時,即可減輕或避免發(fā)生此一"滲銀"現(xiàn)象,其焊點不牢的煩惱也可為之舒緩。最近興起的銅墊浸銀處理(Immersion Silver),其有機銀層極薄僅4-6μm而已,故在焊接的瞬間,銀很快就熔入焊錫主體中,最后焊點構(gòu)成之IMC層仍為銅錫的Cu6Sn5,故知銀層的功用只是在保護銅面而不被氧化而已,與有機護銅劑(OSP)之Enetk極為類似,實際上銀本身并未參加焊接。
電子零件之接腳為了機械強度起見,常用黃銅代替純銅當成底材。但因黃銅中含有多量的鋅,對于焊錫性會有很大的妨礙,故必須先行鍍鎳當成屏障(Barrier)層,才能完成焊接的任務。事實上這只是在焊接的瞬間,先暫時達到消災避禍的目的而已。因不久后鎳與錫之間仍也會出現(xiàn)IMC,對焊點強度還是有不良的影響。
表4. 各種IMC在擴散系數(shù)與活化能方面的比較
System Intermetallic Compounds Diffusion Coefficient(m2/s) Activation Energy(J/mol)
Cu-Sn Cu6Sn5,Cu3Sn 1×106 80,000
Ni-Sn Ni3Sn2,Ni3Sn4,Ni3Sn7 2×107 68,000
Au-Sn AuSn,AuSn2 AuSn 3×104 73,000
Fe-Sn FeSnFeSn2 2×109 62,000
Ag-Sn Ag3Sn 8×109 64,000
在一般常溫下錫與鎳所生成的IMC,其生長速度與錫銅IMC相差很有限。但在高溫下卻比錫銅合金要慢了很多,故可當成銅與錫或金之間的阻隔層(Barrier Layer)。而且當環(huán)境溫度不同時,其IMC的外觀及組成也各不相同。此種具脆性的IMC接近鎳面者之分子視為Ni3Sn4,接近錫面者則甚為分歧難以找出通式,一般以NiSn3為代表。根據(jù)一些實驗數(shù)據(jù),后者生長的速度約為前者的三倍。又因鎳在空氣非常容易鈍化(Passivation),對焊錫性也會出現(xiàn)極其不利的影響,故一般在鎳外表還要鍍一層純錫,以提高焊錫性。若做為接觸(Contact)導電用途時,則也可鍍金或銀。各種待焊表面其焊錫性的劣化,以及焊點強度的減弱,都是一種自然現(xiàn)象。正如同有情世界的生老病死及無情世界的頹蝕風化一樣均遲早發(fā)生,無法避免。了解發(fā)生的原因與過程之后,若可找出改善之道以延長其使用年限,即為上上之策矣。
SMT貼片紅膠
SMT貼片紅膠基本知識
SMT貼片紅膠是一種聚稀化合物,與錫膏不同的是其受熱后便固化,其凝固點溫度為150℃,這時,紅膠開始由膏狀體直接變成固體。
SMT貼片紅膠具有粘度流動性,溫度特性,潤濕特性等。根據(jù)紅膠的這個特性,故在生產(chǎn)中,利用紅膠的目的就是使零件牢固地粘貼于PCB表面,防止其掉落。
印刷機或點膠機上使用:
1、為保持貼片膠的品質(zhì),請置于冰箱內(nèi)冷藏(5±3℃)儲存;
2、從冰箱中取出使用前,應放在室溫下回溫2~3小時;
3、可以使用甲苯或醋酸乙酯來清洗膠管 點膠:①.在點膠管中加入后塞,可以獲得更穩(wěn)定的點膠量;
、.推薦的點膠溫度為30-35℃;
、鄯盅b點膠管時,請使用專用膠水分裝機進行分裝,以防止在膠水中混入氣泡 刮膠:推薦的刮膠溫度為30-35℃注意事項:紅膠從冷藏環(huán)境中移出后,到達室溫前不可打開使用。為避免污染原裝產(chǎn)品,不得將任何使用過的貼片膠倒回原包裝內(nèi)。
印刷方式
1) 印刷方式:鋼網(wǎng)刻孔要根據(jù)零件的類型,基材的性能來決定,其厚度和孔的大小及形狀。其優(yōu)點是速度快、效率高。2) 點膠方式:點膠是利用壓縮空氣,將紅膠透過專用點膠頭點到基板上,膠點的大小、多少、由時間、壓力管直徑等參數(shù)來控制,點膠機具有靈活的功能。對于不同的零件,我們可以使用不同的點膠頭,設(shè)定參數(shù)來改變,也可以改變膠點的形狀和數(shù)量,以求達到效果,優(yōu)點是方便、靈活、穩(wěn)定。缺點是易有拉絲和氣泡等。我們可以對作業(yè)參數(shù)、速度、時間、氣壓、溫度調(diào)整,來盡量減少這些缺點。3) 針轉(zhuǎn)方式,是將一個特制的針膜,浸入淺膠盤中每個針頭有一個膠點,當膠點接觸基板時,就會脫離針頭,膠量可以借著針的形狀和直徑大小來變化。固化溫度100℃ 120℃150℃ 固化時間5分鐘 150秒60秒 典型固化條件:注意點:1、固化溫度越高以及固化時間越長,粘接強度也越強。2、由于貼片膠的溫度會隨著基板零件的大小和貼裝位置的不同而變化,因此我們建議找出最合適的硬化條件。紅膠的儲存:在室溫下可儲存7天,在小于5℃時儲存大于個6月,在5~25℃可儲存大于30天。
由于SMT貼片紅膠受溫度影響用本身粘度,流動性,潤濕等特性,所以SMT貼片紅膠要有一定的使用條件和規(guī)范的管理。
1) 紅膠要有特定流水編號,根據(jù)進料數(shù)量、日期、種類來編號。
2) 紅膠要放在2~8℃的冰箱中保存,防止由于溫度變化,影響特性。
3) 紅膠回溫要求在室溫下回溫4小時,按先進先出的順序使用。
4) 對于點膠作業(yè),膠管紅膠要脫泡,對于一次性未用完的紅膠應放回冰箱保存,舊膠與新膠不能混用。5) 要準確地填寫回溫記錄表,回溫人及回溫時間,使用者需確認回溫完成后方可使用。通常,紅膠不可使用過期的。
SMT組裝工藝
SMT組裝工藝與焊接前的每一工藝步驟密切相關(guān),其中包括資金投入、PCB設(shè)計、元件可焊性、組裝操作、焊劑選擇、溫度/時間的控制、焊料及晶體結(jié)構(gòu)等。
1 、焊料
目前,波峰焊接最常用的焊料是共晶錫鉛合金:錫63%;鉛37%,應時刻掌握焊錫鍋中的焊料溫度,其溫度應高于合金液體溫度183℃,并使溫度均勻。過去,250℃的焊錫鍋溫度被視為“標準”。
隨著焊劑技術(shù)的革新,整個焊錫鍋中的焊料溫度的均勻性得到了控制,并增設(shè)了預熱器,發(fā)展趨勢是使用溫度較低的焊錫鍋。在230-240℃的范圍內(nèi)設(shè)置焊錫鍋溫度是很普遍的。通常,組件沒有均勻的熱質(zhì)量,要保證所有的焊點達到足夠的溫度,以便形成合格的焊點是必要的。重要的問題是要提供足夠的熱量,提高所有引線和焊盤的溫度,從而確保焊料的流動性,濕潤焊點的兩面。焊料的溫度較低就會降低對元件和基板的熱沖擊,有助于減少浮渣的形成,在較低的強度下,進行焊劑涂覆操作和焊劑化合物的共同作用下,可使波峰出口具有足夠的焊劑,這樣就可減少毛刺和焊球的產(chǎn)生。
焊錫鍋中的焊料成份與時間有密切關(guān)系,即隨著時間而變化,這樣就導致了浮渣的形成,這就是要從焊接的組件上去除殘余物和其它金屬雜質(zhì)的原因及在焊接工藝中錫損耗的原因。以上這些因素可降低焊料的流動性。在采購中,要規(guī)定的金屬微量浮渣和焊料的錫含量的最高極限,在各個標準中,(如象IPC/J-STD-006都有明確的規(guī)定)。在焊接過程中,對焊料純度的要求在ANSI/J-STD-001B標準中也有規(guī)定。除了對浮渣的限制外,對63%錫;37%鉛合金中規(guī)定錫含量最低不得低于61.5%。波峰焊接組件上的金和有機泳層銅濃度聚集比過去更快。這種聚集,加上明顯的錫損耗,可使焊料喪失流動性,并產(chǎn)生焊接問題。外表粗糙、呈顆粒狀的焊點常常是由于焊料中的浮渣所致。由于焊錫鍋中的集聚的浮渣或組件自身固有的殘余物暗淡、粗糙的粒狀焊點也可能是錫含量低的征兆,不是局部的特種焊點,就是錫鍋中錫損耗的結(jié)果。這種外觀也可能是在凝固過程中,由于振動或沖擊所造成的。
焊點的外觀就能直接體現(xiàn)出工藝問題或材料問題。為保持焊料“滿鍋”狀態(tài)和按照工藝控制方案對檢查焊錫鍋分析是很重要的。由于焊錫鍋中有浮渣而“倒掉”焊錫鍋中的焊劑,通常來說是不必要的,由于在常規(guī)的應用中要求往錫鍋中添加焊料,使錫鍋中的焊料始終是滿的。在損耗錫的情況下,添加純錫有助于保持所需的濃度。為了監(jiān)控錫鍋中的化合物,應進行常規(guī)分析。如果添加了錫,就應采樣分析,以確保焊料成份比例正確。浮渣過多又是一個令人棘手的問題。毫無疑問,焊錫鍋中始終有浮渣存在,在大氣中進行焊接時尤其是這樣。使用“芯片波峰”這對焊接高密度組件很有幫助,由于暴露于大氣的焊料表面太大,而使焊料氧化,所以會產(chǎn)生更多的浮渣。焊錫鍋中焊料表面有了浮渣層的覆蓋,氧化速度就放慢了。
在焊接中,由于錫鍋中波峰的湍流和流動而會產(chǎn)生更多的浮渣。推薦使用的常規(guī)方法是將浮渣撇去,要是經(jīng)常進行撇削的話,就會產(chǎn)生更多的浮渣,而且耗用的焊料更多。浮渣還可能夾雜于波峰中,導致波峰的不穩(wěn)定或湍流,因此要求對焊錫鍋中的液體成份給予更多的維護。如果允許減少錫鍋中焊料量的話,焊料表面的浮渣會進入泵中,這種現(xiàn)象很可能發(fā)生。有時,顆粒狀焊點會夾雜浮渣。最初發(fā)現(xiàn)的浮渣,可能是由粗糙波峰所致,而且有可能堵塞泵。錫鍋上應配備可調(diào)節(jié)的低容量焊料傳感器和報警裝置。
2、波峰
在波峰焊接工藝中,波峰是核心?蓪㈩A熱的、涂有焊劑、無污物的金屬通過傳送帶送到焊接工作站,接觸具有一定溫度的焊料,而后加熱,這樣焊劑就會產(chǎn)生化學反應,焊料合金通過波峰動力形成互連,這是最關(guān)鍵的一步。目前,常用的對稱波峰被稱為主波峰,設(shè)定泵速度、波峰高度、浸潤深度、傳送角度及傳送速度,為達到良好的焊接特性提供全方位的條件。應該對數(shù)據(jù)進行適當?shù)恼{(diào)整,在離開波峰的后面(出口端)就應使焊料運行降速,并慢慢地停止運行。PCB隨著波峰運行最終要將焊料推至出口。在最掛的情況下,焊料的表面張力和最佳化的板的波峰運行,在組件和出口端的波峰之間可實現(xiàn)零相對運動。這一脫殼區(qū)域就是實現(xiàn)了去除板上的焊料。應提供充分的傾角,不產(chǎn)生橋接、毛刺、拉絲和焊球等缺陷。有時,波峰出口需具有熱風流,以確保排除可能形成的橋接。在板的底部裝上表面貼裝元件后,有時,補償焊劑或在后面形成的“苛刻的波峰”區(qū)域的氣泡,而進行的波峰整平之前,使用湍流芯片波峰。湍流波峰的高豎直速度有助于保證焊料與引線或焊盤的接觸。在整平的層流波峰后面的振動部分也可用來消除氣泡,保證焊料實現(xiàn)滿意的接觸組件。焊接工作站基本上應做到:高純度焊料(按標準)、波峰溫度(230~250℃)、接觸波峰的總時間(3~5秒鐘)、印制板浸入波峰中的深度(50~80%),實現(xiàn)平行的傳送軌道和在波峰與軌道平行狀態(tài)下錫鍋中焊劑含量。
3、波峰焊接后的冷卻
通常在波峰焊機的尾部增設(shè)冷卻工作站。為的是限制銅錫金屬間化合物形成焊點的趨勢,另一個原因是加速組件的冷卻,在焊料沒有完全固化時,避免板子移位?焖倮鋮s組件,以限制敏感元件暴露于高溫下。然而,應考慮到侵蝕性冷卻系統(tǒng)對元件和焊點的熱沖擊的危害性。一個控制良好的“柔和穩(wěn)定的”、強制氣體冷卻系統(tǒng)應不會損壞多數(shù)組件。使用這個系統(tǒng)的原因有兩個:能夠快速處理板,而不用手夾持,并且可保證組件溫度比清洗溶液的溫度低。人們所關(guān)心的是后一個原因,其可能是造成某些焊劑殘渣起泡的原因。另一種現(xiàn)象是有時會出現(xiàn)與某些焊劑浮渣產(chǎn)生反應的現(xiàn)象,這樣,使得殘余物“清洗不掉”。在保證焊接工作站設(shè)置的數(shù)據(jù)滿足所有的機器、所有的設(shè)計、采用的所有材料及工藝材料條件和要求方面沒有哪個定式能夠達到這些要求。必須了解整個工藝過程中的每一步操作。4 結(jié)論總之,要獲得最佳的焊接質(zhì)量,滿足用戶的需求,必須控制焊接前、焊接中的每一工藝步驟,因為SMT的整個組裝工藝的每一步驟都互相關(guān)聯(lián)、互相作用,任一步有問題都會影內(nèi)到整體的可靠性和質(zhì)量。焊接操作也是如此,所以應嚴格控制所有的參數(shù)、時間/溫度、焊料量、焊劑成分及傳送速度等等。對焊接中產(chǎn)生的缺陷,應及早查明起因,進行分析,采取相應的措施,將影響質(zhì)量的各種缺陷消滅在萌芽狀態(tài)之中。這樣,才能保證生產(chǎn)出的產(chǎn)品。